If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+17x+14=0
a = 2; b = 17; c = +14;
Δ = b2-4ac
Δ = 172-4·2·14
Δ = 177
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-\sqrt{177}}{2*2}=\frac{-17-\sqrt{177}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+\sqrt{177}}{2*2}=\frac{-17+\sqrt{177}}{4} $
| 7x-15=12x+45 | | (x-2)^2+8=36 | | -4x+(-2x=54 | | 3x-6(3*4x)=9x-2 | | 5^x=4/100 | | (7x+1/9)(7x-1/7)=x | | 4(90-x)=180 | | -16-4u=-6 | | (3x+12)+144=180 | | (4x+17)+147=180 | | 7(x+1-(2(x-4))=0 | | 75+x=450 | | p-17=21 | | 7(x+1=2(X-4) | | y=4-15y | | 9.50-35=x | | 25/40=45/x | | c/4+10=17 | | 13xx=1 | | 8v-5=3 | | 13xx=™ | | 8x/x−1=10 | | x-7+2+4x=15 | | 5x-11=-14 | | a/6=60 | | 2x-8+3×+2=4×+10+3×-6 | | 3x+-6+7x=3x+-1 | | 3x^2+15=162 | | 68+x+x=90 | | 3+3/x=8 | | 129+29+x=180 | | -7x=12=61 |